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1. Introduction

We are concerned with the identification and characterization of solution errors
in spherically symmetric shock interaction problems. This issue applies to the study
of supernova and the design of inertial confinement fusion (ICF) capsules. In the
first case, theory and simulations contain a number of uncertainties, and comparison
to observations is thus not definitive. A systematic effort to remove some of the
uncertainties associated with simulation will thus be a useful contribution. In the
second case of ICF design, concern over solution accuracy has led to mandates of
formal efforts to assure solution accuracy.

In previous papers, we have developed a general approach to uncertainty and
numerical solution error [5, 6], and we have analyzed shock interactions in a planar
geometry [2, 4]. Here we focus specifically on complications which result from
spherical geometry. In brief, these are:

(1) The solution waves are not of constant strength between wave interactions,
but evolve approximately according to a power law as a function of the
radius.

(2) The solution is not spatially constant between waves.

(3) If the solution is not required to be spherically symmetric, the problem of
identifying wave structures as curves or surfaces in 2D or 3D is introduced.

These are classical problems as far as the solutions are concerned, but the
application of these ideas to the analysis of errors in the solution appears to be
new. The radially dependent strength of spherical waves is discussed in (8]. The
spatial variation of spherical waves is contained in the Guderley solution (7].

The problem of analysis of errors in numerical solutions is of course central to
numerical analysis. Much of this effort is motivated by other concerns, and appears
not to be directly applicable to the problems we address.

An early focus of numerical error modeling was round off errors. For the hyper-
bolic systems we study, modern 64-bit processors with double precision arithmetic
appear, as a practical matter, not to be sensitive to this class of errors, while they
are difficult to analyze theoretically. A more common approach to error analy-
sis in numerical analysis is the study of the asymptotic behavior of errors under
mesh refinement. This is a useful approach, and one we refer to in the case of
well resolved simulations. However, we want an analysis which is also applicable
to the pre-asymptotic case of under resolved simulations as these are so typical of
practical studies of realistic complex physical systems. Moreover, the coefficients
which multiply powers of Az in the asymptotic expressions cannot be determined
theoretically. A third main theme in the analysis of errors is the use of a posteriori
error estimators. These are upper bounds on the error in the solution, based on
criteria derived from the (approximate) solution and the exact equation only. Such
a study comes close to the problems we address, but differs in a few respects. We
seek to characterize the error, not just to bound it. Moreover, a posteriori methods
are most fully developed and justified theoretically for elliptic problems, and have
only a partial or preliminary development for the shock interaction problems we
consider here. A fourth approach to errors is to regard them as due to input uncer-
tainties. In this point of view, uncertainty analysis is a mapping of input random
variables to output random variables.
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In contrast to the first three of the above methods, we analyze the errors sta-
tistically. The statistical models are simple, and in this sense, we analyze only
the central portion of the error statistics, not their tails. We use a Gaussian error
model, and thus we identify the mean error and the covariance. The mean error is
a systematic error, and it can in principle be used to modify or “post process” and
error-correct the approximate solution. The covariance is a measure of the error
variability. One may question the idea that numerical errors can be modeled statis-
tically or that the errors are variable, when each simulation is totally deterministic.
This philosophical question has an easy answer: determinism lies in the eye of the
beholder. In other words, the modeling of a natural phenomena (tossing a coin,
for example) as a probabilistic or deterministic event depends on the level of detail
included or excluded from the model. Thus we argue only why it is convenient or
nearly essential to omit from the modeling of error information needed to make the
error analysis deterministic. The variable (as opposed to the systematic) part of
the error depends on “accidental” features of the numerical model, such as the sub
grid location of waves and wave interaction points relative to the mesh cell edges.
Clearly a deterministic model requiring such data would be too cumbersome for
use in practice, and thus a probabilistic model is preferable. Indeed, the essentially
probabilistic aspect of round off error is well recognized. Given that the complex-
ity of a statistical model is needed, we found that simple linear error models were
sufficient for our analysis [4]. The simple reason for this pleasant turn of events
is that the error is similar to a perturbation, and normally a small perturbation.
Thus the error of a strongly nonlinear problem still has a useful linear expression,
at least as far as our analysis of the error has progressed.

In contrast to the fourth approach to uncertainty quantification above, we allow
for errors generated within the solution pROcesses. Thus we subsume and expand
on this point of view.

As a technical introduction to the paper, we study errors of a spherical shock
interaction problem on uniform radial grid of 100 and 500 cells (with errors deter-
mined by reference to a 2000 cell calculation referred to as the fine grid). We use
MUSCL [1] as the numerical method; for the comparison of tracked to untracked
solutions of the problem, see [3]. The equation of state is a y-law gas with v = 5/3.
The ensemble of 200 initial conditions is defined by a Latin hypercube variation
shock and contact strength by +10% about a base case defined (as in [4]) by a
contact located at 1.5 units from the origin; an inward moving shock located 2.25
units from the origin, with all constant states between waves. The initial base case
shock strength is M = 32.7 and the initial base case Atwood number for contact is
0.82.

2. The Statistical Numerical Riemann Problem

We study statistical numerical Riemann problems (SNRP) in spherical geome-
try. The SNRP introduces errors (modeled as random) in addition to propagating
errors or uncertainty from input to output. The waves in the SNRP have a finite
width and the solution algorithm in the SNRP has only finite accuracy. Because of
the possible finite width of the input waves, the problem and its solution are not
strictly scale invariant. Moreover scale invariance is lost through the length scale
introduced by the radius at the time of interaction.
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We consider a generalization of the spherically symmetric Riemann problem. A
statistical distribution of numerical incoming waves and starting states determines
the SNRP. Its solution gives the output waves, each of which generate the same
type of data. Thus we define the SNRP as a statistical (non-deterministic) mapping
from a statistical input wave description to a statistical output wave description.

The statistics of the SNRP mapping function arise from grid errors, and from
the random placement of a traveling wave relative to the centers of the finite dif-
ference lattice. Our objective in this section is to build up a library of statistical
input-output relations that will include all Riemann problems to be encountered in
Sec. 3. This library will be used to predict results for the composite, late time, or
multi-wave error and uncertainty analysis based on a multi-path scattering formula,
as developed in [4]. The input to the multi-path scattering error prediction formula
is elementary, in that it consists of errors associated with individual isolated wave
interactions and input error uncertainty only.

2.1. The Single Propagating Wave. We start with the analysis of the
single propagating inward shock in spherical geometry. The radially dependent
strength of convergent spherical shocks is discussed in [8]. The spatial variation of
convergent spherical shocks is contained in the Guderley solution [7]. The inward
moving shocks are not of constant strength as in a planar geometry, but evolve ap-
proximately according to a power law as a function of the radius. From Whitham’s
approximation approach, we have

(2.1) Mo r™m,
for cylindrical shocks, and
(2.2) M x =",

for spherical shocks. Here M is the Mach number of the shock, n = 1 + % +

+/ %, and v is the adiabatic exponent defined as the ratio of two specific heats. A

comparison with the exponents from Guderley’s exact similarity solution is given
in Table 2.1. We also have a similar approximate power law for the shock velocity.

TABLE 1. Comparison of the exponents from the approximate and
the exact similarity solutions for an inward propagating spherical
shock wave.

Cylindrical Spherical
v Approximate Exact Approximate Exact
6/5 0.163112 0.161220  0.326223 0.320752
7/5 0.197070 0.197294 0.394142 0.394364
5/3 0.225425 0.226054 0.450850 0.452692

Fig. 1 shows the exponential divergence of the shock strength (here charac-
terized by the Mach number) at r — 0. The accuracy is amazing in view of the
simplicity of the approximate theory. The figure shows that converging shocks are
reacting primarily with the geometry, as assumed in the approximate theory, and
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FIGURE 1. Left. Mach number vs. radius for a single inward
propagating shock. Right. The same data plotted on a log-log
scale.

are affected very little by further disturbances from the source of the motion; the
strength of the initial shock enters only through the constants of proportionality in
(2.1) and (2.2). This is not true for outward moving shocks. They slow down due
to both the expanding geometry and to the continuing interaction with the flow be-
hind. From Fig. 2, however, we find that the strength of an outward moving shock
also follows a power law which is similar to (2.2) but with a modified exponent,
after the radius of the outward moving shock is three times the initial radius. To
develop a model for shock wave propagation which has a smaller pre-asymptotic
regime, we allow two distinct exponents,

r® o <r<3rg
(2.3) M x { raz > 3rp.
Here we choose a; = —0.4, a; = —1.0 for v = 1.67, and ¢ is the initial shock
radius.

We also study the single propagating contact (step up and step down cases).
Fig. 3 shows the contact width w,. ~ c.t'/5 growing from 2 to 5 cells with a rate
asymptotically proportional to t1/5. We found that the step up contact and the
step down contact have the same behavior. These properties appear to be sensitve
to the details of the numerical algorithm. We have used a MUSCL algorithm. The
degree of recalibration of the model as presented here, needed for other solvers,
is an important question, out of the scope of the study. For some aspects of the
solution error, the probabilistic error formalism is more general than is required.
When the standard deviation of the error is much smaller than the mean error
(when the coefficient of variation, their ratio, is close to zero), then the error is
essentially deterministic, and the probabilistic formulation is unnecessary. This is
the case in Fig. 3, with the standard deviation of the width, shown to the left scale
of Fig. 3, significantly smaller than the mean width.

2.2. The Shock Contact Interaction. We study the wave strength, speed,
width and position errors after a wave interaction. We represent the wave properties
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FIGURE 2. Left. Mach number vs. radius for an outward moving
shock wave starting at different radii rg. Right. The same data
plotted on a log-log scale; the dashed lines in this plot represent
the power law model (2.3).
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FIGURE 3. Ensemble mean contact width for a single propagat-
ing contact. We record the width in units of Az. The standard
deviation is also plotted, as the points to the extreme left.

as a five tuple
(2'4) ’LU;: = (wz’dl’;’)‘z7szapz) )

where w is a wave strength, J is an error in the wave strength, A is a wave width, s
is a wave speed error, and p is a position error. Also a = ¢ denotes input and a = o
signifies output. We choose dimensionless variables to measure wave strengths; the
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Atwood number A = (p2 — p1)/(p2 + p1) to measure the contact strength, and the
Mach number M defined as the ratio of the shock speed to the ahead state sound
speed, in the frame of a stationary ahead state, for the shocks. We measure the
wave widths in units of mesh spacing. The wave position errors are specified in grid
units, after an initial transient period. Within this formulation, we can describe
the output wave errors by an expression multi-linear (and eventually linear) in the
two input wave strengths, ¢.e. linear in each of the two input wave strengths.

For input wave strengths w!, wb (i denotes in) and output wave strengths wy,
w§ and w§ (o denotes out) (ordered from left to right), the multinomial expansion
for the output is defined by its coefficients ax,y, for J a multi index, J = (j1, ja2).
The expansion has the form

(2.5) wp = Zak,Jwi’J ,
J

where wh’/ = (wi)’(wi)’2. The coefficients ax, s depend parametrically on the
base case Riemann problem, about which a specified variation is allowed. Given a
statistical ensemble of input and output values w* and w®, we use a least squares
algorithm to determine the best fitting model parameters oy g, for any given poly-
nomial order of model. We use (2.5) variationally, that is to map input variation
(about the base case for the ensemble) to output variability. In other words, (2.5),
which is a formula for wave strengths, implies a similar formula with different but
computable coefficients a,y, in which all w’s are defined as variations from the
base case, so that they represent uncertainty or error. In the planar case [4], we
showed that a linear input-output relation, w@ = ako+3_; ak,,-w§ was sufficient to
describe the exact (nonlinear) input-output relation. The adequacy of this model
is established from consideration of the STD of the model error. We see that the
same assumption is adequate in the present case. We also have an expansion similar
to (2.5) for the wave strength errors, wave width errors and wave position errors.
To avoid possible confusion, we note that the word error is used to describe two
different types of quantities. The solution (wave strength, width or position) error
is a difference between a fine grid and a coarse grid solution. The coefficients for
a linear model of point values of this error are presented. The model error is the
difference in some quantity and the linear model (2.5) to represent it, as a function
of the variable parameters which define the ensemble.

We begin with the analysis of the initial shock contact SNRP at the ensemble
averaged level. We present the linear model coefficients in Table 2, with £10%
variation for the initial contact strength and +5% variation for the initial shock
strength (consistent with £10% variation in pressure ratio as used in the planar
study [4]) about the base case. According to the analysis of Sec. 2.1, the strength
of this initial inward shock is not constant, and is increasing as it moves toward the
origin. We use the power law M = Cr—?/" to estimate the initial shock strength
at the interaction time and use this quantity represented by the variable C as the
input shock strength in the modeling. The input contact width has been set to
zero, as part of the specification of this SNRP.

To read Table 2, we note that the first (w{) row (labeled in the table as
w9 (1. sonic)) lists coefficients ay ; for J = (0,0), J = (1,0), etc. These coeffi-
cients are determined by a least squares algorithm that minimizes the expected, or
mean error over the ensemble, in comparing the linear predictions to the exact so-
lution of the Riemann problem. The last two columns describe errors in the model
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TaBLE 2. The SNRP shock contact interaction. Expansion coeffi-
cients for output wave strengths, wave strength errors, wave width
errors and wave position errors (linear model) for the initial shock
contact interaction. Here the base case input contact wave width
is zero. The final columns refer to difference between the linear
model (2.5) and the exact quantity. The errors in rows 4-12 refer
to the difference between the numerical solution on 100 cells and
the exact solution using 2000 cells.

variable \ coef  const Wi wh model error
(contact) (1. sonic) STD STD/we
wave strengths (100 cells)
w? (1. sonic) -33.353 19.521 2.501  0.860 0.954%
w§ (contact) 0.374 0.200 0.0003 0.042 7.650%

w3 (r. sonic) 3.568 0.402 -0.045 0.009 0.463%

wave strength errors (100 cells)
89 (1. sonic) 2039 -3.200 0.0  0.157 0.174%
89 (contact) 0.236 0.016 -0.002 0.021 3.825%
89 (r. sonic) 0.053 0.003 -0.001  0.0008 0.041%

wave width errors (100 cells)
X% (1. sonic) 1.675 0.305 0.017 0.085
g (contact) 7.003 0482  -0.146 0.239
9 (r. sonic) 2.829 0.302 -0.024 0.107

wave position errors (100 cells)
p$ (1. sonic) -0.247 0.242 0.005 0.009
p$ (contact) 0.643 0.065 -0.011  0.192
p$ (r. sonic) -0.042 0.062 0.004 0.009

(2.5). The presence of outliers was monitored and the ensemble L., norm deter-
mined (results not tabulated); occasional outliers indicate non Gaussian statistics.
The model error is defined as (predicted - exact) where exact is the result of the
simulation and predicted is the value given by the finite polynomial (linear) model
(2.5). The column STD is the standard deviation of (predicted - exact). Note
that the STD errors, as defined, are dimensionful. To aid in interpreting the error
magnitudes, we present in a final column (labeled STD/w°) the standard deviation
of the error in the model divided by the mean value of the variable predicted. This
column represents a fractional (dimensionless) error in the model.

According to the analysis of Sec. 2.1, the strength of the output inward moving
shock is modeled as Cr—2/*, This formula is accurate after some time, and the
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Table 2 entry is w¢ = C in this formula. We form a linear model for this constant
in this expression in Table 2. We find very small errors in the exponent, not
tabulated here. We developed a model (2.3) for the strength of the output outward
moving shock in Sec. 2.1. Here in our study, we are only concerned with the first
formula in (2.3). The entry w§ in the table represents the coefficient multiplying
the power term.

700 — 700
|—a— tsmean |
600} —s— o'mam|  f | 600
BS00F - 4 £500F
5 | 5 F
q400} - 2 400F
®300f - » 300
£ .. g
=200F - - i= 200F:
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0*=3% 2 4% 055 "0 ~b5 1

Grid Units "Grid Units

FIGURE 4. Left: ensemble mean inward/outward ‘moving shock
and contact widths after a shock contact interaction. Right: en-
semble mean shock and contact position errors as a function of
time, expressed in grid units. The associated standard deviations
are extremely small, not shown in the plots. In the legend, C. de-
notes the contact while I.S. and O.S. are the inward and outward
moving shocks.

The three variable () rows in Table 2 represent wave width errors. The stan-
dard deviation for this quantity is about 10% of the mean value, indicating that
the error model is (on the whole) satisfactory, and that the shock wave widths are
not (mostly) fluctuating greatly. The inward moving shock width decreased about
10% relative to the wave width at the interaction time, while the outward moving
shock width increased about 10%. See Fig. 4, left frame. The contact width is
modeled as ¢.t}/% where both the width and ¢ are expressed in mesh units. The
Table 2 entry A = ¢, in this formula. We form a linear model for this constant in
this expression in Table 2.

We also study the wave position errors. Fig. 4, right frame, shows the position
errors as a function of time. The entries in the wave position rows of Table 2
present those errors, given in mesh units. All position errors are subgrid. The
standard deviations are smaller than the means, indicating that the errors are
basically deterministic.

All solution errors are sensitive to the grid spacing, taken to be 100 computa-
tional cells in Table 2-4. This sensitivity is not extreme. For example, if the 100 cell
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model is used to analyze the 500 cell data, the model errors (STD) approximately
double, but remain small.

2.3. Shock Reflection at the Origin. Here we study the reflection of the
shock off the origin. According to the analysis of Sec. 2.1, the input inward moving
shock has infinite strength at the origin. We used the strength at the radius r =1
as the initial state and the input shock strength in the modeling process. We study
the wave strength, wave strength errors, wave width and wave position errors. See
Table 3.

TABLE 3. The SNRP defined by the shock reflection at the origin.
Expansion coefficients for output wave strengths, wave strength
errors, wave width errors and wave position errors (linear model)
for input variation +10%.

variable \ coef const wi model error
(l. sonic)y STD STD/we

wf (r. sonic)  -242.394 5.606 1.137 0.468%

89 (r. sonic) -3.27 0.031 0.112 0.045%
A$ (r. sonic) 1.221 0.018 0.099
p$ (r. sonic) 0.474 0.001 0.012

We found that the Mach number of the outward moving shock (reflected shock)
was essentially independent of the input variation in Mach number. To explain this
phenomena, we recall that the ambient state ahead of the outward moving reflected
shock is an incoming continuously variable flow. The sound speed ahead of this flow
is affine linearly dependent on the strength of the incoming shock wave, as is the
shock speed of the reflected outward moving shock wave. Thus the outward moving
Mach number, as a ratio of two quantities varying affine linearly with the incoming
shock strength, has a fractional linear form in the incoming wave strength. A simple
calculation shows that the variation in the outward moving shock Mach number
M, contains the factor (1 — M,) and since M, ~ 1.2, this small factor suppressed
variation in M, as a function of M;, the Mach number of the incoming shock. Thus
the Mach number is not a good measure for the outward moving shock strength.
We choose the pressure behind the reflected shock instead as w? in Table 3. The
pressure also follows the power law. The large entries in this row result from the
fact that the (dimensional) pressure (w{) is much larger in pressure units than the
Mach number (w?).

2.4. The Contact Reshock Interaction. After reflection from the origin,
the transmitted lead shock wave re-crosses the deflected contact. The outgoing
waves from this interaction consist of a rarefaction wave propagating toward the
origin, a contact and a shock propagating outward. The region inside of the outward
propagating shock, on both sides of the contact is not piecewise constant, but
contains an inward propagating compression, which eventually breaks to form an
inward moving shock, reaching the origin at interaction 4. This inward moving
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TABLE 4. The SNRP contact reshock interaction. Expansion co-
efficients for output wave strengths, wave strength errors, wave
width errors and wave position errors (linear model).

variable \ coef const wh wh model error
(r. sonic) (contact) STD STD/we
wave strengths (100 cells)
w? (1. sonic) 0.097 -0.108 0.436 0.031 13.305%
w¢ (contact) ~ 0.103  -0.192 1.168 0.007 1.116%

wg (r. sonic)  0.988 0195  -0.225 0.003 0.262%

wave strength errors (100 cells)
% (1. sonic) -0.291 0.161 -0.468 0.017 7.296%
89 (contact)  -0.067 0.142  -0.125 0.006 0.957%
% (r. sonic) -0.030 0.107  -0.0004 0.001 0.087%

wave width errors (100 cells)
A$ (1. sonic) 9.776 -6.372 5.091 0.484
g (contact)  1.903 0.156  -0.677 0.534
A§ (r. sonic) 4.088 -1.401 1.549 0.168

wave position errors (100 cells)
p% (1. sonic) 4.782 -3.602 2.372 0.379
p3 (contact) -0.453 0.409 -0.054 0.177
pg (r. sonic)  -0.199  -0.685  3.213 0.052

compression is generated from the geometrically caused weakening of the outward
moving shock, and is a well recognized aspect of spherical shock wave dynamics.
The shock and the rarefaction interact, and eventually the rarefaction disappears in
this interaction. Here we only follow the waves through the output of interaction 3,
and thus avoid much of this interaction. Specifically, we focus on the inward moving
rarefaction and not the inward moving shock. We study the wave strength, wave
strength errors, wave width and wave position errors resulting from interaction 3.
See Table 4.

According to the analysis of Sec. 2.1, this is a step down interaction and the
contact width is modeled as c.t!/® where both the width and ¢ are expressed in
mesh units. We form a linear model for the coefficient ¢, in this expression in
Table 4. The rarefaction width has the form constant + rate x time. The entry
X¢ refers to the constant, which gives an offset for the centering of the rarefaction
wave. This entry is expressed in mesh units.
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3. Composite Shock Interaction Problems
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FIGURE 5. Left: space time density contour plot for the multiple
wave interaction problem studied in this section, in spherical ge-
ometry. Right: type and location of waves determined by the wave
filter analysis with labels for the interactions. Here I.R. denotes
the inward moving rarefaction.

We consider the repeated interactions of a spherically symmetric shock wave
with a spherical contact located near the origin. The base case for each wave
interaction coincides with the base case assumed for the interactions studied in
Sec. 2. The transmitted shock, after interaction with the contact, progresses to
interact with (i.e. reflect off) the origin. This interaction was also studied in
Sec. 2. Subsequently, there are a number of reverberations, of reflected rarefactions
and compression waves, between the contact and the origin. The interactions are
illustrated by the space time contour plots of the density, shown in Fig. 5, left. In
Fig. 5 (right), we show the type and location of the waves, as determined by the
wave filter analysis program. Five interactions are extracted from the complex wave
interaction problem. Both figures refer to the base case. The build up of complex
wave patterns is evident.

The main point of this section is to formulate and validate the multipath scat-
tering formula of {4] for analysis of errors. We analyze errors at the output to
interaction 3 directly, comparing the 100 mesh and 500 mesh simulation to a 2000
mesh, fine grid simulation, here taken as a substitute for the exact solution. These
errors are compared to those generated by adding up and propagating errors from
the input data and from each of the interactions 1 to 3, using the multipath scat-
tering formula. Thus, for example, a position error as input to interaction 1 is
translated geometrically to a position error for the output to interaction 1 via sim-
ple geometric considerations as in [4]. This error is propagated to an input error for




ERRORS IN SPHERICAL SHOCK PHYSICS PROBLEMS

TABLE 5. Predicted and simulated errors for output wave
strengths, wave widths and wave positions, output to interaction
3. The inward rarefaction and contact strengths are expressed di-
mensionlessly as Atwood numbers. The outward shock strengths
are in the units of Mach number. The width and position errors
are in mesh units. The wave strength errors are expressed as mean
+ 20 where ¢ is the ensemble STD of the error/uncertainty.

variable \ error

Simulation Prediction

100 vs. 2000 mesh

Simulation Prediction

500 vs. 2000 mesh

wave strength errors and propagated initial uncertainties

59 (1. sonic) 0.04£2(0.03)  0.03+2(0.02) | 0.01£2(0.02)  0.009£2(0.01)
82 (contact) 0.1442(0.05)  0.12+2(0.02) | 0.03+2(0.01)  0.03+2(0.008)
88 (r. sonic) | -0.0242(0.02) -0.02:£2(0.01) | -0.006::2(0.005) -0.007::2(0.004)

mean wave width errors

mean wave width errors

A? (1. sonic) 3.04 2.83 2.63 2.72
A§ (contact) 5.36 6.11 5.56 6.08
Ag (r. sonic) 2.71 3.04 2.92 2.98

mean wave position errors

mean wave position errors
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P (1. sonic) 1.25 0.23 0.12 0.18
p$ (contact) 0.43 0.06 0.05 0.04
p§ (r. sonic) -0.73 -0.15 -0.08 -0.11

interaction 2 through solutions of radial differential equations. Propagation con-
tinues, and yields an error at the output to interaction 3. See Table 5. The wave
strength rows present the result of initial uncertainty propagated to the output of
interaction 3 as well as the accumulation of solution errors. The multipath scat-
tering formula gives reasonable prediction of error magnitudes in all cases except
the wave position errors for the under resolved (100 mesh) simulation. We see that
the created numerical solution errors are important. We also find that a major
portion of the created numerical solution errors come from the second interaction,
the shock reflection interaction. A detailed study of these errors and their relative
importance will be presented in a following paper.

4. High Dimensional Wave Filter

4.1. The Two Pass Algorithm. We develop a two dimensional wave filter.
The analysis starts at a general point, and at that point, searches in a general
direction. The analysis proceeds in two passes. The first pass uses only state data
along a line segment, which are extracted from the 2D simulation data and analyzed
using the 1D filter introduced previously [4]. In this first pass, we choose the normal
direction as the direction through the given point which has the strongest wave in
the dominant family and the weakest waves in the other families. We obtain an
approximate wave position and width by applying the 1D filter to the line segment
in the normal direction of the wave. The second pass improves in this choice of
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FIGURE 6. The strengths of 3 output waves.

normal direction by the construction of a local tangent plane. We introduce an array
of (two in 2D) additional 1D line segments displaced tangentially (i.e. normal to
the normal just constructed) from the original one. The analysis as above along
each segment in the array leads to wave positions in the tangentially displaced
array. Finally a tangent plane is fit to array of wave positions. The normal to this
plane is the wave normal of the final construction. We analyze the inward moving
shock wave before interaction 1 of our base case using this wave filter.

4.2. Initial Estimate for the Normal Direction of the Wave. Applying
a 1D wave filter to the state data along a line segment gives a wave position and the
width. Starting from a trial wave position, and a trial normal direction given by
an angle 6, and a distance r along the resulting segment, we pick up two points on
the left and the right ends of the segment. With the suitable choice of r, (e.g. the
wave width) the states at the two points represent the left and right constant states
of the wave. The left and right states and their decomposition into 1D elementary
wave via a Riemann solution varies according to 6. The Riemann solution has
three output waves, whose strengths are assessed dimensionlessly. The type of
the strongest wave is defined to be the wave type at the trial wave position. The
strongest wave has a maximum value and the weaker waves have minimum value
at an angle 6,,,. We choose 6,, as the normal direction. Using this normal direction
8m, the 1D wave filter will select a trial position p,, and a wave width. Fig. 6 shows
the strengths of three output waves at an angle ,0 < 6 < 90°.

4.3. Corrected Estimate for the Normal Direction of the Wave. The
accuracy of the wave position and normal is improved through the construction of
a local patch of a wave surface. The 2D wave surface patch is a curve segment
defined by two linear segments meeting at P, and thus defined (in the present
approximation) by two points P, and Py, serving as end points of the two linear
segments. We construct trial points P, P! by their locations along the tangential
directions 0,,, — 90°, 8, + 90° respectively passing through P, at a certain distance
d. Two normal direction 6,0, at P/, P! respectively are found as above. Using
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FIGURE 7. Schematic diagram illustrating the computation of the
corrected estimate for the normal to the wave.

the 1D (first pass) construction along the lines defined by 6;, F/ and 6, P/, we
find two points P;, P, on the interface to define the local wave surface patch. With
these three points, P;, P, P- on the interface, we can construct a circle. This circle
represents the interface locally. The normal direction 8, of the circle at the point
P,, represents the normal direction of the interface at the point P,,. We choose 6,
as the normal direction for the correction step.

Fig. 7 shows a schematic diagram illustrating the correction step. We see the
correction from the initial estimate {,, to the corrected normal.

The correction depends on the distance d from P, to P/ and P/. If d is too
small, the normal direction is sensitive to the error in the points P, P. on the
interface. Fig. 8 shows that the choice of d equal to 3 mesh units is satisfactory.
This figure also illustrates the improvement of accuracy and the robustness of the
correction step. Here, we tested 89 lines at angles 1 — 89° for 6y from (0,0) for Py
to the initial shock data, input to interaction 1 of our base case simulation. We
see that the standard deviations of the errors for the normal direction are small.
The space averages of the errors for the normal direction, which we do not present,
were very small (less than 10% of the STD) for all choices of d. All choices of d
give a satisfactory normal direction. The initial errors are somewhat large. This
is because the wave has 0 wave width at the initial time step. The 1D filter fits
state data to an error function, and this fit is not stable before the initialization
transients in the numerical shock have disappeared.

5. Conclusion

The multipath integral formula to express solution error as a composition of
errors associated with individual interactions and a propagation law for errors be-
tween interactions has been extended to spherically symmetric shock interaction
problems. The main new difficulties encountered were the non-constancy of the
solution between interaction events and the non-constancy of waves and errors be-
tween interactions. In addition, as preparation for future multidimensional error
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FIGURE 8. STD of errors for the wave normal constructed from
the 2D wave filter, as a function of the tangential separation d of
the wave front points P, P, in mesh units.

analysis, we have extended the wave filter previously introduced to detect waves in
multidimensional numerical solutions.
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